Software architecture for multi-bed FDK-based reconstruction in X-ray CT scanners
نویسندگان
چکیده
Most small-animal X-ray computed tomography (CT) scanners are based on cone-beam geometry with a flat-panel detector orbiting in a circular trajectory. Image reconstruction in these systems is usually performed by approximate methods based on the algorithm proposed by Feldkamp et al. (FDK). Besides the implementation of the reconstruction algorithm itself, in order to design a real system it is necessary to take into account numerous issues so as to obtain the best quality images from the acquired data. This work presents a comprehensive, novel software architecture for small-animal CT scanners based on cone-beam geometry with circular scanning trajectory. The proposed architecture covers all the steps from the system calibration to the volume reconstruction and conversion into Hounsfield units. It includes an efficient implementation of an FDK-based reconstruction algorithm that takes advantage of system symmetries and allows for parallel reconstruction using a multiprocessor computer. Strategies for calibration and artifact correction are discussed to justify the strategies adopted. New procedures for multi-bed misalignment, beam-hardening, and Housfield units calibration are proposed. Experiments with phantoms and real data showed the suitability of the proposed software architecture for an X-ray small animal CT based on cone-beam geometry.
منابع مشابه
Implementation of the FDK Algorithm for Cone-Beam CT on the Cell Broadband Engine Architecture
In most of today’s commercially available cone-beam CT scanners, the well known FDK method is used for solving the 3D reconstruction task. The computational complexity of this algorithm prohibits its use for many medical applications without hardware acceleration. The brand-new Cell Broadband Engine Architecture (CBEA) with its high level of parallelism is a cost-efficient processor for perform...
متن کاملAn Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering
FDK algorithm is a well-known 3D (three-dimensional) approximate algorithm for CT (computed tomography) image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this p...
متن کامل3D Algebraic Iterative Reconstruction for Cone-Beam X-Ray Differential Phase-Contrast Computed Tomography
Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an ...
متن کاملAnalysis of Cone-Beam Artifacts in off-Centered Circular CT for Four Reconstruction Methods
Cone-beam (CB) acquisition is increasingly used for truly three-dimensional X-ray computerized tomography (CT). However, tomographic reconstruction from data collected along a circular trajectory with the popular Feldkamp algorithm is known to produce the so-called CB artifacts. These artifacts result from the incompleteness of the source trajectory and the resulting missing data in the Radon s...
متن کاملTime-resolved cardiac interventional cone-beam CT reconstruction from fully truncated projections using the prior image constrained compressed sensing (PICCS) algorithm.
C-arm cone-beam CT could replace preoperative multi-detector CT scans in the cardiac interventional setting. However, cardiac gating results in view angle undersampling and the small size of the detector results in projection data truncation. These problems are incompatible with conventional tomographic reconstruction algorithms. In this paper, the prior image constrained compressed sensing (PI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 107 2 شماره
صفحات -
تاریخ انتشار 2012